Copula based factorization in Bayesian multivariate infinite mixture models

نویسندگان

  • Martin Burda
  • Artem Prokhorov
چکیده

Bayesian nonparametric models based on infinite mixtures of density kernels have been recently gaining in popularity due to their flexibility and feasibility of implementation even in complicated modeling scenarios. However, these models have been rarely applied in more than one dimension. Indeed, implementation in the multivariate case is inherently difficult due to the rapidly increasing number of parameters needed to characterize the joint dependence structure accurately. In this paper, we propose a factorization scheme of multivariate dependence structures based on the copula modeling framework, whereby each marginal dimension in the mixing parameter space is modeled separately and the marginals are then linked by a nonparametric random copula function. Specifically, we consider nonparametric univariate Gaussian mixtures for the marginals and a multivariate random Bernstein polynomial copula for the link function, under the Dirichlet process prior. We show that in a multivariate setting this scheme leads to an improvement in the precision of a density estimate relative to the commonly used multivariate Gaussian mixture. We derive weak posterior consistency of the copula-based mixing scheme for general kernel types under high-level conditions, and strong posterior consistency for the specific Bernstein?Gaussian mixture model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Dependency Structure of Default Processes Based on Bayesian Copula

One of the main problems in credit risk management is the correlated default. In large portfolios, computing the default dependencies among issuers is an essential part in quantifying the portfolio's credit. The most important problems related to credit risk management are understanding the complex dependence structure of the associated variables and lacking the data. This paper aims at introdu...

متن کامل

Risk Management in Oil Market: A Comparison between Multivariate GARCH Models and Copula-based Models

H igh price volatility and the risk are the main features of commodity markets. One way to reduce this risk is to apply the hedging policy by future contracts. In this regard, in this paper, we will calculate the optimal hedging ratios for OPEC oil. In this study, besides the multivariate GARCH models, for the first time we use conditional copula models for modelling dependence struc...

متن کامل

Hybrid Copula Bayesian Networks

This paper introduces the hybrid copula Bayesian network (HCBN) model, a generalization of the copula Bayesian network (CBN) model developed by Elidan (2010) for continuous random variables to multivariate mixed probability distributions of discrete and continuous random variables. To this end, we extend the theorems proved by Nešlehová (2007) from bivariate to multivariate copulas with discret...

متن کامل

A Frank mixture copula family for modeling higher- order correlations of neural spike counts

In order to evaluate the importance of higher-order correlations in neural spike count codes, flexible statistical models of dependent multivariate spike counts are required. Copula families, parametric multivariate distributions that represent dependencies, can be applied to construct such models. We introduce the Frank mixture family as a new copula family that has separate parameters for all...

متن کامل

A mixture copula Bayesian network model for multimodal genomic data

Gaussian Bayesian networks have become a widely used framework to estimate directed associations between joint Gaussian variables, where the network structure encodes the decomposition of multivariate normal density into local terms. However, the resulting estimates can be inaccurate when the normality assumption is moderately or severely violated, making it unsuitable for dealing with recent g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 127  شماره 

صفحات  -

تاریخ انتشار 2014